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NASA TT F - 12,953 
INVESTIGATION OF THE DYNAMIC CHARACTERISTICS OF A SOLID BODY 

WITH A CYLINDRICAL CAVITY, PARTIALLY FILLED WITH A 
VISCOUS LIQUID 

8. 1 .  Rabinovich, G. G. Yefimenko and N. Ya. Dorozhkin 

ABSTRACT. The dynamic characteristics of a solid cy1 indrical 
body containing a cavity partially filled with a viscous 
1 iquid (water and glycerine mixture) are analyzed through 
boundary value problems. 
amplitude-frequency curves are shown to be very similar to 
experimental ones, so that they constitute a sufficiently 
accurate description o f  the motion of the model. 

Equations are developed whose 

§ I .  Preliminary remarks and solution of boundary value problems. Formu- - /11* 

Zation of boundary vaZue problems. Let us use the equations of perturbed mo- 
tion in one of the planes of symmetry of a solid body with a cavity partially 
filled with a viscous liquid, given in [5]: 

< )  

where the point G is the metacenter of the body-liquid system. 

All of the coefficients in (1.1) with the exception of Bn and B 

determined in the same manner as in the case of an ideal liquid [ 6 ] .  

coefficients Bn and B 

liquid, are expressed by the functions 'Y, Y o ,  Cpn, Qj, Qjn  ( j  = 1, 2, 3; n = 1, 

, are 

The 
On 

, characterizing the effect of the viscosity of the On 0 0  

2 ,  ...), which are the solutions of the boundary value problems formulated in 
[SI. 

2 The Reynolds number is determined by the formula R = mo/j. 

These functions will be considered dimensionless relative to the radii of 
a 

the cylinder rO(Cpn, Cpi, Q .  ) and r '(Y, Y o ,  a?). 
Jn 0 J 

.*Numbers in the margin indicate pagination of foreign text. 
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For w we s h a l l  introduce t h e  frequency which i s  c h a r a c t e r i s t i c  f o r  each 

of t he  boundary value problems and which can be i d e n t i f i e d  with t h e  n- th  f r e -  

quency of t h e  v ibra t ions  of t he  l i qu id  w i n  t h e  l i g h t  o f  t h e  concept i n  [ S I .  n 
Let us move now t o  a cy l ind r i ca l  system of coordinates oxr8 with i t s  

o r ig in  i n  t h e  center  of  t h e  bottom of t h e  cavi ty ,  where x and r are dimension- 

l e s s  coordinates r e l a t i v e  t o  r We s h a l l  assume 0' 0 
t h a t  @n = G (r,x) s i n  8, and introduce new nota t ions  and dimensionless un- 

known funct ions 

0 < x < h / r  = fi; 0 < r < 1. 

n 

(1.3) - / 1 2  

The equations whi'ch def ine these  funct ions are independent, and t h e  bound- 

ary value problems i n  [SI become t h e  following: 

A,G; = 0; ( A ~  - i ~ )  v, = 0; (1 4) 
(Ao - iR) V, = 0; (Az - iR) W, 0. 

(1.53 
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-+------- - 0 (n = 0, 1,2,  . . .); awn av, av, G:: 

avo - awo 2wo aG; ----- +--=O; ar dr r ax 

. ax ax ar r 

.". .__" .  . ., 

H a  L'. 

Here 

.--- awn au,, +7+- vn a& = o  (n=O, 1,2 ,...);I ax a,r ar 

i 

I 

L and L '  a r e  the l i n e s  of i n t e r s e c t i o n  of t h e  wetted surface and t h e  undis- 

turbed f r e e  sur face  with t h e  plane 0 = ~ / 2 .  

I n  addi t ion  t o  conditions (1.5) and (1.6), t h e  functions G i ,  Un, Vn and 

W (n = 0, 1, 2, ...) must s a t i s f y  t h e  condition of r e g u l a r i t y  a t  r = 0. n 

SoZution of boundary vazue probl.ems for the functions u n' vn> Wn' G; 

(n = 2, 2, ... ). I n  the  case under discussion,  t he  function G n  has the  form 

[41 

where 

E,, - roo_ts of the equation J; (5) = 0. 
* -  

- - - _ I  

5 a r e  t h e  roots  of t h e  equation J'(E) = 0.  n 1 

We w i l l  seek t h e  so lu t ion  of t h e  boundary value problem i n  t h e  form - /13 

(1.8). 

where the  functions with t h e  subsc r ip t s  j = 1 and j = 2 exac t ly  s a t i s f y  t h e  

boundary conditions a t  r = 1 and x = 0, respec t ive ly .  

Select ing the  appropriate  p a r t i a l  so lu t ions  of equations (1.4) f o r  func- 

t i ons ,wi th  subscr ip ts  j = 1 and j = 2, we can express the  desired so lu t ions  i n  

the  form of s eve ra l  s e r i e s  with indeterminate coe f f i c i en t s .  The l a t t e r  a r e  
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determined with an accuracy up t o  t h e  normalizing f a c t o r  from t h e  conditions of 

s o l v a b i l i t y  of t he  systems of a lgeb ra i c  equations i n t o  which condi t ions (1.5) 
and (1.6) are transformed following t h e  appropriate  s u b s t i t u t i o n s  and expan- 

s ions of t h e  right-hand s i d e s  of t he  equations i n t o  Fourier  s e r i e s .  As a re- 

s u l t ,  w e  w i l l  have 
_-  .. I 

B e re  

The coe f f i c i en t s  Bn, introduced i n  (1.1) depend only on Dm and D,, which 

a r e  expressed by the  formulas 
. .  - I  

I D, = - 
. x,, ch En& - tn sh ' .. 

- -  
or,. with la rge  R,, when l u ~ J = l ~ , ] - ~ '  

(1.10) 



1 - -  

n n 
where x, and x' and x' 
i n t o  Fourier  s e r i e s  according t o  t h e  s i n e s  and cosines i n  t h e  segment 0 < x 

nm a r e  the  expansion coe f f i c i en t s  of .the funct ions x 

im < 6 ;  an and K 

2 2 i n  t h e  first quadrant of the  plane Bm, Rn or  Cn,  Rn. 

a r e  the  univalent roo ts  of t he  corresponding funct ions,  pos i t i ve  /14 - n 

Since x,--am,z /% (1 t o a t  l a rge  Reynolds numbers ( f o r  s u f f i c i e n t l y  

small m), t h e  solenoidal  component of t h e  ve loc i ty  vec tor  decreases exponen- 
I 

, t i a l l y  from t h e  bottom i n t o  t h e  depths o f - t h e  f l u i d ,  as well  as  with increasing 

d is tance  from t h e  wal ls  i n  the  r a d i a l  d i r ec t ion .  Solut ion ( l .S ) ,  cons t i t u t ed  

from (1.9), s a t i s f i e s  (1.4) and a t  h s l / d R  
d i t ions  (1.6) as  well  as (1.5), with the  exception of a small a rea  (on the  

order of 1/%) of t he  corner po in t  of l i n e  L .  

i t  s a t i s f i e s  t h e  boundary con- n 

Solution of boundaq vaZue problems for functions Uo, Yo, W and Go". We 

s h a l l  seek the  so lu t ion  of the  boundary value problem i n  the  form of a sum of 

the  th ree  p a r t i a l  so lu t ions  

0 

(1.11) 

where t h e  functions with the  subsc r ip t s  j = 1 and j = 2 s a t i s f y  p rec i se ly  the  

boundary conditions f o r  r = 1 and x = 0, respec t ive ly .  

We w i l l  s e l e c t  t h e  funct ions with subsc r ip t  j = 3 s o  t h a t  a l l  t h ree  solu- 

t i ons  w i l l  s a t i s f y  exac t ly  conditions (1.6) i n  t h e  sum. 
form of an upright  c i r c u l a r  cyl inder ,  we w i l l  have [4] 

For a cavi ty  i n  t h e  

Here 
. n=l 

(1.12) 



Employing t h e  ,functions (1 .12)  with t h e  a i d  of t h e  method described, we 
( j l  ( j l  ( j l  ( j l  (j = 1, 2 ,  3) :  obta in  t h e  following so lu t ions  f o r  Uo 9 vg , wo 9 Go 

I - 
where t h e  c o e f f i c i e n t s  D DA-are expressed by t h e  formulas Om ’ 

1 
! 

(1.13) 

Mere Km and KL a r e  t h e  expansion c o e f f i c i e n t s  of t h e  func t ions  Kn(x) and 

Kt(x) i n t o  Fourier s e r i e s  according t o  t h e  s i n e s  and cosines;  they have t h e  n 

For t h e  c o e f f i c i e n t  8 a f t e r  transformations and t h e  app l i ca t ion  of sum- n’ . 
mation formulas [3]  

c i s ion  up t o  terms on t h e  order  of 1/K, 

we obta in  t h e  following expression, accura te  with a pre- 

* n  
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Here 

(1.14) 

(ti - e) sh E,$ sh En% 9 t 

P + n  I 

f 

1 - 2 c h ~ , 7 f - f - 2 c h ~ , ~ -  chEpKch E,,%]). 

92. Determination o f  t h e  parameters gn and 6 . Let us introduce i n t o  the  
On 

discussion t h e  

On' parameter 6 

logari thmic decrement of the v ib ra t ions  of t h e  f l u i d  6 

r e l a t e d  t o  the  coe f f i c i en t s  B 

and t h e  n 
and BOn'by the  r e l a t ionsh ips  n 

To determine 6n and 60n, l e t  us use the  formulas i n  [5], l imi t ing  our- 

s e lves  t o  the  terms on the order  of l/q and considering dimensionless t h e  

coordinates,  t he  s c a l a r  and vec tor  p o t e n t i a l s .  

The corresponding expressions i n  a cy l ind r i ca l  system of coordinates can /16 
_I_ 

be  wr i t t en ,  with considerat ion of (1.3),  i n  t h e  form 
" -  

Subs t i t u t ing  i n  ( 2 . 2 )  the  corresponding expressions from (1.9) ,  (1.13) as  
* wel l  as (1.10.) and (1.143, a f t e r  severa l  t ransformations a r e  summed by t h e  

.. 
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.. . . . . . . . . . . . . . , . . .. " ,  . . . . . .- 

subscr ip t  m [3], with an accuracy up t o  terms on t h e  order  of l/%, we w i l l  

have . . .  

In  t h e  boundary cases,  formulas (2.3) and (2.4) change t o  t h e  following: 

f o r  a deep f l u i d  (li 1) 

f o r  a shallow f l u i d  (E 1) 

Figure 1 shows t h e  coe f f i c i en t s  8 = S n q  and Zon = Son% as funct ions 
r -  n 

of the l eve l  of ' ful lness  5 ,  ca lcu la ted  with t h e  a i d  of  (2.3) and (2.4) f o r  t he  

first four  fo%m o f  v ib ra t ion  (n = 1, 2, 3, 4 ) .  

A t  -+ 0, formulas (2.3) and (2.7) lose  the  physical  meaning t h a t  is re-  

l a t e d  t o  the  proximity of the  statement of t h e  problem and t h e  method of solu-  

t i on .  

§ 3 .  Analysis o f  t h e  numerical r e s u l t s  and comparison w i t h  experiment. 

We w i l l  l i m i t  ourselves  t o  a considerat ion of - t h e  case of  a deep f l u i d  (E > 1); 

equations (1.1) w i l l  dea l  only with the first note  of t he  v ib ra t ion  (n = 1). c_ / I 7  



Dropping the  subscr ip t  1 i n  the  general ized coordinates ,  we can wr i t e  (1.1) 

thus : 

To est imate  the  e f f e c t  of t he  addi- 

t i o n a l  d i s s i p a t i v e  terms on the  dynamic 

c h a r a c t e r i s t i c s  of t he  system, we per- 

formed ca l cu la t ions  of t h e  parameters 

and 601 using (2.5) and (2.6). These 

same p a r m e t e r s  were estimated independ- 

e n t l y  on the b a s i s  of a comparison of 
t he  t h e o r e t i c a l  and experimental f r e -  

quency c h a r a c t e r i s t i c s  o f  t h e  "body- 

f lu id"  system with t r a n s l a t i o n a l  and 

r o t a t i o n a l  displacements. 

2.4 f i  In carrying out t he  experiments, r.6 - 
we used as a model a cy l ind r i ca l  cav i ty  

F i g u r e  1 with a diameter of  350 mm, f i l l e d  with 

a mixture of water and g lycer ine  t o  t h e  

leve l  h = 295 nun, with an ax is  of suspension passing through t h e  metacenter of 

the  "body-fluid" system. 

the  concrete.'parameters of t h e  cav i ty  and the  suspension elements. 

Calculat ions were performed with considerat ion of  

The independent t r a n s l a t i o n a l  and angular displacements of t h e  model a r e  
described by the  following systems of equations: _ _ _  . 

.. .. 
. ; ' f~ ,Ec+o~u+"==P; f+pcfj+o:5+uLuu=0; 

(3.2) 
Y, -t ~~4 i- wiq + a,$'+ a$ = M; 

Here 
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- 

I 

For symmetry, t he  designations a r e  changed somewhat i n  comparison with 

(3.1). 

In  [I] t h e r e  is  an empirical  formula f o r  ca l cu la t ing  t h e  logarithmic dec- - I18 

rement of t h e  v ib ra t ions  of t h e  f l u i d  a t  n = 1. In  t h e  case where h > 1, t h i s  

formula has t h e  form - 
d1 =- 

1V-K 
I , 8 4 ~ c  , 

(3.4) 

With an accuracy up t o  a constant f a c t o r  fi it agrees with (2.5) ( a t  n = 1) 

and with t h e  corresponding formula given i n  171. 

F i g u r e  2 F i g u r e  3 

4 The experiment showed t h a t  f o r  numbers R < 10 t h e  r e l a t i o n s h i p  (3 .4)  1 
gives reduced values of 6 and a cor rec t ion  must be introduced i n  it. 1 

10 



In  ca lcu la t ing  the amplitude-frequency c h a r a c t e r i s t i c  curves of t h e  sys-  

tems (3.2) ,  the  coe f f i c i en t s  B,, B$, mu, 2 2  W q )  and J" were determined experimen- 

t a l l y ,  and logari thmic decrement 8 
c ,  

by-formula (3.4) with the  s u i t a b l e  1 
correc t ion .  I 

I The frequency of t h e  f l u i d  us and t h e  coe f f i c i en t s  X1, XO1, I J ~  and J, 
I 

included i n  expressions (3.3) were ca lcu la ted  according t o  the  formulas f o r  an 

i d e a l  f l u i d  [4] and checked by means of ind iv idua l  experiments according t o  

the  method described i n  [ 2 ] .  

Thus, of a l l  t h e  coe f f i c i en t s  i n  (3.2),  it was necessary t o  v e r i f y  i n  the  

f i n a l  s t age  of the  experiments only t h e  value B 

(2.1) and (2.6), which was done on the  bas i s  of a comparison of t h e  t h e o r e t i c a l  

and experimental amplitude-frequency c h a r a c t e r i s t i c  curves i n  the  v i c i n i t y  of 

t he  na tu ra l  frequency of t h e  system, where the  e f f e c t  of t he  coe f f i c i en t  BO1 

i s  maximal. 

ca lcu la ted  with the  a i d  of 01' 

Figure 2 and Figure 3 show the  t h e o r e t i c a l  ( s o l i d  curve) and experimental 

( c i r c l e s )  amplitude-frequexcy curves of t he  t r a n s l a t i o n a l  and angular displace-  

ments of the  model. The t h e o r e t i c a l  curves were ca lcu la ted  f o r  s eve ra l  values 

of t h e  decrement 

v i scos i ty  of t he  f l u i d .  

amplitude curves a r e  very c lose  t o  the  experimental ones. This allows us t o  

conclude t h a t  t he  systems of equations (3.2) a r e  a s u f f i c i e n t l y  accurate  de- 

s c r i p t i o n  of  t h e  motion of t h e  model, and (2.6)  g ives  a r e s u l t  which i s  c lose  t o  

i n  order  t o  allow f o r  poss ib le  e r r o r s  i n  determining the  

I t  is apparent from the  f igu res  t h a t  t he  t h e o r e t i c a l  

I 

- t h e  ac tua l  one, a t  l e a s t  i n  the  range of R1 numbers under considerat ion.  For - /19 - - -  

an i l l u s t r a t i o n  of the  e f f e c t  of t he  coe f f i c i en t  6 on the dynamic curve of 

the  system i n  Figure 3 we have used a dashed l i n e  t o  represent  t he  amplitude 

c h a r a c t e r i s t i c  curve ca lcu la ted  on t h e  assumption t h a t  B 

01 

= 0. 01 

We can show t h a t  t he  value of t h e  cor rec t ion  t o  the  dynamic coe f f i c i en t  of 

amplif icat ion of t h e  model a t  t h e  na tu ra l  frequency of t he  model, introduced by 

addi t iona l  terms i n  (3.2), dependent on Bo,, i s  determined by t h e  value of t h e  

coe f f i c i en t  

._ 

which i s  comparable with uni ty .  . .  

11 
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According t o  (2.4), (2.6) and ( 2 . 8 ) ,  t h e  parameter 6 has the  property 01 
of f ixed s ign .  

01' or  negat ive depending on the  s i g n  of X 

r ec t ion  of  t h e  dynamic coe f f i c i en t  of ampl i f ica t ion  of t he  open system w i l l  be 

Therefore the  s i g n  of c o e f f i c i e n t  A can be  e i t h e r  p o s i t i v e  1 
In  accordance with t h i s ,  t he  cor- 

pos i t i ve  o r  negative,  and t h e  s o l i d  curve i n  Figure 3 w i l l  run above o r  below 

the  dashed one. 

i n  the  equations of exc i ted  motion (3.1) i n  c e r t a i n  cases may no t  lead t o  a 
01 Thus, the  d is regard  of t he  terms dependent on parameter B 

"margin" of s t a b i l i t y  . . .  

-1 2 
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